Numerical Methods for Solving Two-point Boundary Value Problems: Differed Correction Schemes, Interpolation, and Conditioning Methods - Novriana Sumarti - Books - VDM Verlag - 9783639137873 - April 15, 2009
In case cover and title do not match, the title is correct

Numerical Methods for Solving Two-point Boundary Value Problems: Differed Correction Schemes, Interpolation, and Conditioning Methods

Novriana Sumarti

Price
NOK 879
excl. VAT

Ordered from remote warehouse

Expected delivery Jul 31 - Aug 13
Add to your iMusic wish list

Numerical Methods for Solving Two-point Boundary Value Problems: Differed Correction Schemes, Interpolation, and Conditioning Methods

The numerical approximation of solutions of ordinary differential equations played an important role in Numerical Analysis and still continues to be an active field of research. In this book we are mainly concerned with the numerical solution of the first-order system of nonlinear two-point boundary value problems. We will focus on the problem of solving singular perturbation problems since this has for many years been a source of difficulty to applied mathematicians, engineers and numerical analysts alike. Firstly, we consider deferred correction schemes based on Mono-Implicit Runge-Kutta (MIRK) and Lobatto formulae. As is to be expected, the scheme based on Lobatto formulae, which are implicit, is more stable than the scheme based on MIRK formulae which are explicit. Secondly, we construct high order interpolants to provide the continuous extension of the discrete solution. It will consider the construction of both explicit and implicit interpolants. The estimation of conditioning numbers is also discussed and used to develop mesh selection algorithms which will be appropriate for solving stiff linear and nonlinear boundary value problems.

Media Books     Paperback Book   (Book with soft cover and glued back)
Released April 15, 2009
ISBN13 9783639137873
Publishers VDM Verlag
Pages 212
Dimensions 317 g
Language English