Clustering in Non-metric Spaces: from the Euclidean to the Conceptual Similarity - Mario Giovanni C. A. Cimino - Books - VDM Verlag - 9783639187496 - August 5, 2009
In case cover and title do not match, the title is correct

Clustering in Non-metric Spaces: from the Euclidean to the Conceptual Similarity

Mario Giovanni C. A. Cimino

Price
NOK 589
excl. VAT

Ordered from remote warehouse

Expected delivery Aug 11 - 22
Add to your iMusic wish list

Clustering in Non-metric Spaces: from the Euclidean to the Conceptual Similarity

Clustering algorithms partition a collection of objects into a certain number of clusters (groups, subsets, or categories). Object clustering algorithms generally partition a data set based on a dissimilarity measure expressed in terms of some distance. When the data distribution is irregular, for instance in image segmentation and pattern recognition where the nature of dissimilarity is conceptual rather than metric, distance functions may fail to drive correctly the clustering algorithm. Thus, the dissimilarity measure should be adapted to the specific data set. The purpose of this book is to present the main ideas concerning the application of the machine learning paradigm to the discovering of the dissimilarity between objects. Readers involved in similarity modeling will view how computational intelligence techniques, such as fuzzy systems, neural networks and evolutionary computation, can be a powerful vehicle for capturing conceptual relationships among objects. The application of such methods is also discussed in detail, with a series of experiments.

Media Books     Paperback Book   (Book with soft cover and glued back)
Released August 5, 2009
ISBN13 9783639187496
Publishers VDM Verlag
Pages 104
Dimensions 163 g
Language English