Machine Learning: An Algorithmic Perspective, Second Edition - Chapman & Hall / CRC Machine Learning & Pattern Recognition - Marsland, Stephen (Massey University, Palmerston North, New Zealand) - Books - Taylor & Francis Inc - 9781466583283 - October 8, 2014
In case cover and title do not match, the title is correct

Machine Learning: An Algorithmic Perspective, Second Edition - Chapman & Hall / CRC Machine Learning & Pattern Recognition 2nd edition

Marsland, Stephen (Massey University, Palmerston North, New Zealand)

Price
NOK 1,019
excl. VAT

Ordered from remote warehouse

Expected delivery Nov 3 - 12
Christmas presents can be returned until 31 January
Add to your iMusic wish list

Machine Learning: An Algorithmic Perspective, Second Edition - Chapman & Hall / CRC Machine Learning & Pattern Recognition 2nd edition

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author?s website.


457 pages, 205 black & white illustrations, 21 black & white tables

Media Books     Hardcover Book   (Book with hard spine and cover)
Released October 8, 2014
ISBN13 9781466583283
Publishers Taylor & Francis Inc
Pages 458
Dimensions 183 × 262 × 24 mm   ·   1.13 kg
Language English