Sensitivity Analysis of Probabilistic Graphical Models: Theoretical Results and Their Applications on Bayesian Network Modeling and Inference - Hei Chan - Books - VDM Verlag - 9783639136951 - April 16, 2009
In case cover and title do not match, the title is correct

Sensitivity Analysis of Probabilistic Graphical Models: Theoretical Results and Their Applications on Bayesian Network Modeling and Inference

Hei Chan

Price
SEK 729
excl. VAT

Ordered from remote warehouse

Expected delivery Jul 30 - Aug 12
Add to your iMusic wish list

Sensitivity Analysis of Probabilistic Graphical Models: Theoretical Results and Their Applications on Bayesian Network Modeling and Inference

Probabilistic graphical models such as Bayesian networks are widely used for large-scale data analysis in various fields such as customer data analysis and medical diagnosis, as they model probabilistic knowledge naturally and allow the use of efficient inference algorithms to draw conclusions from the model. Sensitivity analysis of probabilistic graphical models is the analysis of the relationships between the inputs (local beliefs), such as network parameters, and the outputs (global beliefs), such as values of probabilistic queries, and addresses the central research problem of how beliefs will be changed when we incorporate new information to the current model. This book provides many theoretical results, such as the assessment of global belief changes due to local belief changes, the identification of local belief changes that induce certain global belief changes, and the quantifying of belief changes in general. These results can be applied on the modeling and inference of Bayesian networks, and provide a critical tool for the researchers, developers, and users of Bayesian networks during the process of probabilistic data modeling and reasoning.

Media Books     Paperback Book   (Book with soft cover and glued back)
Released April 16, 2009
ISBN13 9783639136951
Publishers VDM Verlag
Pages 164
Dimensions 249 g
Language English